Wednesday 14 September 2016

Embedding Useful Tools Within Science Lectures

As part of the DISCOVERe tablet initiative at Fresno State, I have been considering ways to take advantage of a 1-to-1 (computer to student) classroom environment.  There are some particular websites and simulations that I have included in my classes that I believe have been mostly enjoyable and beneficial for students.  However, beyond anecdotal accounts, I do not have a holistic view of how students are using these resources outside of class time as a supplementary resource to my instruction.  I will use an exit survey at the end of the course to get a better sense of students' use of resources outside of class.

I consider the resources I have used so far to be well-described by the SAMR model (Substitution, Augmentation, Modification, and Redefinition; Figure 1).  The first two parts of the SAMR model, substitution and augmentation, focus on the enhancement of current pedagogy, while the latter two parts focus on the transformation of pedagogy.  The tools I have used so far this semester can be usefully classified and reflected on as either enhancement-based resources or transformation-based resources.

Figure 1 - SAMR Model (Taken from: goo.gl/zbi7GI)

Some examples of enhancement-based resources I have used are a scientific notation calculator, significant figures calculator, specific heat capacity data, and scale of the universe.  These resources have been mostly integrated as part of existing tasks within my courses.  I think these resources are very helpful supports for students, but a concern is how students may become over-dependent on them as opposed to using them exclusively to solve problems.  I encourage my students to solve the problems first by themselves and then use these tools to validate their answers.  However, if students do not follow my suggested learning approach, then these resources may be ineffective, if not problematic for student learning. The SAMR model fails to illustrate that substitution is not always necessarily an enhancement.

Some examples of transformation-based resources I use are simulations and name games such as Build an Atom, Build an Isotope, Making Compounds, and Naming Compounds.  The tasks I can now have in class allow students much greater ownership of the content, as opposed to me demonstrating the simulations on a data projector.  While students complete such tasks, I have found it beneficial to walk around the class and observe where students have difficulties so that I can elaborate on such examples to the whole class.  It also provides me with a better opportunity to interact with students as opposed to being centered at the top of the room for an entire class.  In some instances, I have students complete a Socrative questionnaire that provides me with additional insight on their learning for the particular resource being used that day.

I have a number of technology resources, both enhancement-based and transformation-based, that I plan to use during the rest of the semester.  I am hoping to keep my use of new technology on the latter end of the SAMR model, but I am also keeping in mind that some of my existing tasks are fine the way they are, with or without technology.   The SAMR model allows for wide interpretation in that the movement between different parts of the model is highly instructor-specific.  For instructors that use many teacher-centered approaches, any technology use by students could be transformative. For instructors that use many student-centered approaches, it is difficult to find technology that is transformative.  I like to think that my current teaching is mix of both student-centered and teacher-centered approaches. Hence, I can still target both sides of the SAMR model.



No comments:

Post a Comment