Showing posts with label Teaching. Show all posts
Showing posts with label Teaching. Show all posts

Wednesday, 17 August 2016

Integrating Student Tablets Into Lectures

Over the spring semester and a week in the summer I completed a professional development course at Fresno State for an initiative known as DISCOVERe.  The purpose of the DISCOVERe program is to support faculty in redesigning their courses to leverage the benefits of tablets, so that students can improve their conceptual knowledge while also developing their technology skill-set.  I will be teaching my tablet-supported General Chemistry class starting next week with over 100 students.  I hope to share some of the things I learn over the course of the semester through blog posts and to gain insight from others.

Before taking the DISCOVERe course I was a little skeptical about students using tablets within a lecture-based approach.  From my research, I know many ways that educational technology benefits students' learning.  However, using tablets in lectures presented me with a mismatch of what is typically a teacher-centered approach and the student-centered approach that using tablets would require.  I realized that DISCOVERe was asking me much more than to simply use tablets.  DISCOVERe was asking me to question my role and my students' role within my classes in order to effectively leverage the benefit of tablets.

In terms of Chemistry Education, there are great and open-source simulations that help explain many microscopic concepts such as the atom, concentration or pH.  Such concepts are difficult for students to grasp given that such phenomena cannot be seen with the naked eye.  Some examples of helpful simulations to support students include PhET simulations, Molecular Workbench, and Chemcollective. Before the DISCOVERe program, I was using these resources in a mostly didactic manner through demonstrations, despite a Predict-Observe-Explain (POE) approach.  Students would make predictions about a phenomenon through iClickers, I would demo the simulation, and then I would call on individual students to offer explanations. 

The prediction part of my POE approach was fine, but the advantage of using tablets this semester is that my students can now simply follow a link to observe and explore the simulations, as opposed to being bored by observing me do a demonstration.  My role can now switch from demonstrating to ensuring all students are able to use the simulation on their own.  Further, through the DISCOVERe program, I had the opportunity to trial Socrative, which allows for students to submit open-ended responses.  I previously had obvious difficulty in getting a response from all students in a large lecture class given time constraints, but through Socrative all students have an opportunity to participate and share their ideas on the simulations.  I will be able to view student responses in real time to get a much broader sense of their understanding than before and know what conceptual challenges to target.

I am looking forward to thinking about other ways to take advantage of tablets in my course throughout the semester.  I can already see from the activities I am developing that there will be better opportunities for student engagement.  I think what might be challenging is if students are ready to see their role as taking more ownership.  Much of this responsibility can reside with individual students, but I can help this process by setting clear expectations of students' role at the beginning of the semester and by consistently using activities that align with such expectations.

Wednesday, 13 May 2015

Automated Guidance in the Web-based Inquiry Science Environment (WISE) Video

The National Science Foundation (NSF) are having an online Teaching and Learning Video Showcase all this week, featuring over 100 videos from various STEM-based projects across the US.  The videos are between 2-3 minutes and give a brief overview of each project.  Members of the public are encouraged to watch and vote for their favorite video. There are some really great projects worth exploring!

Below is a link to one of NSF videos I helped develop with my colleagues from the WISE research group at UC Berkeley.  We research automated guidance for a range of science activities to support middle and high school students.  Check it out here!



Tuesday, 30 December 2014

Research Brief on Power Relations in Inquiry-Oriented Classrooms

Relating Research to Practice is a website that contains a set of research briefs summarizing recent peer-reviewed educational research. James Forrest from the Exploratorium in San Francisco recently wrote a research brief on an article from my PhD research about power dynamics in inquiry-oriented classrooms.  Relating Research to Practice is a National Science Foundation funded project that is led by the Exploratorium through collaboration with researchers affiliated with the Center for Informal Learning and Schools (CILS) at the Exploratorium, the Learning in Informal and Formal Environments (LIFE) Center at the University of Washington, King’s College London, and the Afterschool Alliance.  Follow the link below to check out the research brief!

Forrest, J. (2014). Obstacles or opportunities? Identifying power dynamics surrounding inquiry in the classroom: An ISE research brief discussing Donnelly, McGarr, & O’Reilly, “’Just be quiet and listen to exactly what he's saying': Conceptualising power relations in inquiry-oriented classrooms.” Retrieved from http://relatingresearchtopractice.org/article/369

Saturday, 24 August 2013

10 Reasons to Use WISE as a Science Teacher

The Web-based Inquiry Science Environment (WISE) is an inquiry learning environment that encourages student exploration in scientific investigations.  WISE is the product of over 20 years of international research and has an ever-expanding community of students, teachers, researchers, and software developers across the world.  If you are unfamiliar with WISE, here are 10 reasons you should consider using it as a science teacher!


  1. Inquiry-based learning. WISE units engage students in the methods of real scientists. Through various activities and scaffolding tools, students collaborate to explore issues of social importance; they pose relevant questions and make predictions; they experiment with computational models; they work to evaluate and distinguish discrepant information; and they construct evidence-based explanations through reflection and discussion.  
  2. Free and open source. WISE subsists on generous support from the National Science Foundation, which means it is available for anyone with a computer and internet connection to use.
  3. A growing library of classroom-tested units. The WISE library offers a collection of units that address key conceptual difficulties students encounter in biology, chemistry, earth sciences, and physics. These units are designed to supplement teachers’ core curricular scope and sequence, and each has been iteratively refined through classroom-based research, and demonstrated improvements in students’ understanding. So whether teachers decide to use all the units or just one, WISE's library offers a rich and reliable resource that is being continually expanded and improved with modern and up-to-date technologies.
  4. Standards-based science. WISE library units have been carefully crafted to fulfill core US national standards in reading, writing, math, and science at the middle and high school levels. What is more is that units can be easily adapted to address local standards. Units take a multidisciplinary approach to science so that even as students learn inquiry by interacting with simulations and visualizations, and by interpreting and articulating scientific evidence, they do so through activities that emphasize essential skills in reading, writing, and multimedia literacy.
  5. Comprehensive instructional support. A WISE teacher account offers a suite of integrated tools for teachers to monitor students’ real-time progress, to facilitate grading and giving feedback, and to automatically score embedded assessments. These tools are continually refined through collaborations with practicing teachers, who understand the real challenges of managing modern classrooms. By facilitating these necessary but time-consuming tasks, teachers are free to focus on what makes them indispensable: Providing quality instruction to individual students.
  6. Based on research, refined through practice. Through collaborations with teachers, technology designers, and education researchers, WISE has refined a set of principles, which guide the design of all WISE curriculum materials and tools.  These principles ensure the most effective use of technology, as they are advised by real teacher and student experiences.
  7. Powerful learning technologies. WISE researchers collaborate with software design experts to create innovative curriculum-integrated technologies. Interactive visualizations and simulations; applications for drawing, diagramming and animating; and tools for collaborative brainstorming, discussion, and idea management, are each designed to develop in students the inquiry skills important for lifelong learning. Teachers can find them in the existing classroom-tested WISE library units, or they can add and customize their own through the easy-to-use WISE authoring tool.
  8. Makes science meaningful. WISE units introduce students to complex science concepts through personally and socially relevant topics. Students determine the structure of detergent molecules by helping to clean the Gulf oil spill; they come to understand mitosis by investigating candidate cures for cancer; and they explore orbital and projectile motion by optimizing a path for deorbiting a space shuttle. Each unit uses a classroom-tested pattern of instruction that values the ideas students bring with them, helps them connect new information to their personal experiences, and integrates their various ideas into a coherent understanding of science.
  9. Supports diverse learners. Individual students differ in their experiences, their interests, and their abilities. Some may excel at writing, while others may have a penchant for drawing. Some may speak multiple languages fluently, while others may be learning English as a second or third language. That is why WISE provides a variety of tools, activity patterns, and instructional scaffolds that afford multiple ways for expressing and assessing understanding. That way, no students’ abilities go unrecognized, and all have the chance to succeed.
  10. Increases participation in science. WISE gives more teachers and students the opportunity to do inquiry-based science. Units often put students in the roles of scientists, and make difficult concepts accessible both for teachers to teach, and for students to learn. With tools and activities to support inquiry, WISE helps students see themselves as capable of doing science. It allows students to realize that no matter their backgrounds and abilities, science can be a potential future career.

Follow WISE updates on Facebook, Google+ and Twitter.

Saturday, 17 November 2012

Fire-Start Learning

I have had many arguments with undergraduates and higher diploma student-teachers about teaching metaphors.  They say things like it is a bunch of rubbish really, airy fairy type stuff that has no practical application in the classroom.  Rubbish is in the eye of the beholder.


I believe that any teacher that cares about what they do would always be questioning their role and what it means to be a teacher.  Your perception of what your role is what drives your practice.  Students are constantly changing so a teacher's role needs to be flexible in order to adapt appropriately.  One of the most useful ways to question your role is to compare and contrast it with other roles, i.e,. a metaphor.  Through such questioning you can develop a better understanding of what your role is and what it is not.  Is a teacher's role similar to a mechanic fixing a car, a pilot trying to fly a plane, or a builder constructing a house?

In the video below, Ken Robinson uses the gardener metaphor for a teacher.  It is one of many types of metaphors, all of which can raise important questions about what effective teaching is.  I personally like the fire-starter metaphor as I believe it conjures up the ignition of a passion for scholarship, a love of learning.  However, it is not an easy avenue to follow as it can spread in directions never anticipated and many others may think you are crazy to play with fire!  It is fine as long you are not afraid to get burned once in a while and realise it is part of the process.  You can add many materials to a fire.  Some will burn bright, some will tame it and some may enrage it.  Do you view yourself as a fire-starter or a firefighter trying to maintain many burning flames?

Saturday, 13 October 2012

Learner to Learnist in Education

I have started using Learnist recently.  Learnist is a social learning and networking site that allows boards to be created around different areas of interest.  Learnist is still in beta-version and is invite only. However, many uses of Learnist in schools have already been highlighted, from organising materials, to keeping students up-to-date, to engaging with experts in particular fields, etc.

So is Learnist pretty much the same thing as Pinterest?  Learnist is very similar to Pinterest, but its central focus is learning.   Despite its focus, I also find Learnist has distinct advantages over Pinterest.  When I initially started using Pinterest I had great enthusiasm for it and blogged on some of its potential uses.  However, after using Pinterest more regularly I expressed frustration with technical issues on it.  What is frustrating with Pinterest is that it is very difficult to pin a website on a board when there is no picture on that website, especially when many websites that do not align with Pinterest.  The websites either do not have a picture on their pages or the pictures that they have are not big enough for Pinterest.

What is useful about Learnist is that it lets you pin a website to a 'board' and then search for an image to go with that website, i.e. the picture and the website are not tied together.  The 'board' on Learnist looks more like a list so the layout is visually different from Pinterest where you can see multiple pins at once.  The website that you have linked to from Learnist can also be read on Learnist without having to open up a new page to go to that website.  You can also tag what you post on Learnist so that it will link with similar material that another user may have posted.  In this way you may discover new material on your area of interest.

You can also reposition your posts on Learnist once you have them pinned to a board (something that cannot be done on Pinterest).  For example, I have created a board 'Research - wikis' and posted a number of article links and their abstracts.  I then decided to re-order the articles by their year of publication.  I hope to add more article links and abstracts to this board over the coming weeks.  For these articles I used the front cover of the article as a picture and failing that, I used a picture of the article's author.  The latter type pictures look a lot nicer!

Finally, Learnist allows you to share your posts easily to other websites such as Twitter, Facebook, Pinterest, LinkedIN, Google+, etc.  Easy posting to other websites is great for people who have already invested significantly in Pinterest, as they can move pins easily from Learnist to Pinterest.

Like my initial reaction to Pinterest, I am optimistic to see how Learnist will develop.

Wednesday, 10 October 2012

How I Learn


Anseo A Mhúinteoir!
I recently wrote a blogpost for Anseo A Mhúinteoir (Irish for Here teacher) that asked for contributors to explain how they learn.  Below I have included the blogpost.  Anseo A Mhúinteoir are still looking for contributors.  I would encourage everyone to try it whether you blog or not.  It is a useful exercise to think about how you learn and as a teacher to find out the different ways that others learn.  Anseo A Mhúinteoir have a great variety of contributions from different people all with different ways of learning.

Here is my take on answering the question: 

How do I learn?

It is a difficult question to answer as learning is open to such varied interpretation.   If I was to consider my learning based on the domains in Bloom's Taxonomy (Cognition, Psychomotor, and Affective) I feel that I draw on all three domains.  The domains I draw on most depend on what it is that I am learning.
I believe to really learn something I first need to want to learn it (affective).  The topic to be learned has to connect to some part of my life and if it does, I will happily invest time and value in it.  Secondly, once I am interested in the topic, I find the cognitive aspects can be a natural progression (understanding, applying, evaluating, etc.).  I like to find out as much about the topic as possible and do not enjoy being limited by traditional demarcations of a subject/discipline.  My learning is done through an iterative process of my own research and discussion with others.   Discussion with others is particularly valuable if they have the same or a greater level of interest as it can enhance my interest further (more affective).  Activities that bring in the psychomotor domain can also bring variation and thus some additional enjoyment to learning the topic, but I still think the value of psychomotor activities is lost if I do not have the opportunity to connect it with the theory (cognitive).

Below I have noted some examples that help my learning under the three domains of affective, cognitive and psychomotor.  Some of the examples of course can fall under more than one domain, but for ease of presentation I have placed them under one domain.

Affective Domain 

-Discussion: A simple discussion to find out what other people know about a topic or why they might be interested in that topic can aid my learning.  If I see that a peer is interested in a topic it is helpful for my interest if I understand their reasoning for such interest.  A recent example is seeing what people post on various social media such as Facebook, LinkedIN, Twitter and what they find valuable.

-Debate: A good debate is very helpful to my learning.  It encourages me to do my homework per se, so that I have sufficient evidence to support my arguments.  I retain such evidence as there is a context in which it becomes useful and that I can apply it to and evaluate it. The Twitter hashtag #edchatie has good debates every Monday night at 8:30 pm (GMT).

-Leisurely Reading: A good article, short story or book can open my mind to things I had not previously considered, but that I should. 

-Reflection: Everybody always seems to be in a rush with too much to do.  Immersion in the present can impede our perspective.  I find taking the time to reflect on things can be very insightful to the learning process.

Psychomotor Domain

-Experiments - Some people need to be constantly up and doing something.  I am quite happy to sit and ponder.  I enjoy being active, but I do not learn something by simply engaging the psychomotor domain.  I would want to go back to a desk and think about it, and make various notes for enhanced understanding and for future reference.

-Making models - I find making a model of something can be very helpful to understanding it while being physically engaged.  Models are particularly helpful for visualising a difficult concept.  Plus getting students to make models opens the door to ways of representing a phenomenon that you may never have thought of.  Hence, you gain and the students gain.

Cognitive Domain (Remembering, Understanding, Applying, Analysing, Evaluating, Creating)

-Questions, questions and more questions - how I get the answers can vary.  The instructor, journals, books, online searches, blogs, podcasts, videos, etc.  The response rate and depth of knowledge varies for each one.  An important aspect of my learning through questioning is that I am not afraid to ask them and to admit I do not know something.

-Blogging: Blogging is something I only started last year, but it has done great things for my learning.  There are so many cognitive functions I need to draw on to write a post of any substance.  Constructing blog posts also feeds back into my affective domain.

-Creating mindmaps - I find creating mindmaps extremely helpful to my learning.  It allows me to see a topic in terms of the bigger ideas and how they connect, and it also breaks things down into finer detail.  I used to find it very difficult to remember concepts, as they were presented as fragmented bits of information.  The bigger ideas were often missing.  Taking the time to connect the dots helped me make more sense of the material and in turn, make further connections.

When teaching it can be a great activity to ask students to develop mindmaps in groups, and to compare and differentiate the mindmaps across these groups.  Download mindmapping software FreeMind for free.

-Mnemonics - I find mnemonics are very helpful to learning things.  For example, I have always remembered the names of the planets from the mnemonic My Very Educated Mother Just Served Us New Potatoes.  Of course, the mnemonic is outdated now, but I still remember it.  Check out this Mnemonic Generator.

-Tests - Tests receive an awful lot of criticism.  I believe many tests could be much more beneficial if people's approach to the tests were based around learning as opposed to getting good grades.  I used to have a terrible approach to tests.  I would try swallow the information and not think it through.  I got sick of it though and decided to re-engage with my learning for the love of learning as opposed to the love of a good grade.  Funny how it worked though, as it gave me better grades than I used to ever get! 

Tuesday, 21 August 2012

Don't Say My Name

Is it a bad idea to have students call a teacher by their first name?  It is typically the norm in primary (elementary) and secondary (middle/high school) school classrooms for students to call the teacher by Miss or Mister, sometimes alongside their surname.  Why?

The exclusion of a teacher's first name from classroom interactions is often associated with aiding effective classroom management.  The use of titles can be viewed as a simple and benign way to keep visible demarcations between teachers and students (Rosenblum-Lowden, 2000).   There is the risk and fear that students may view teachers on a more personal level if the teacher's first name is used, and in turn, result in behavourial issues that upset the classroom learning environment.  Despite these assertions, classroom management is still 'a murky area of conflicting ideas and vague rules' (Konca & Otugen, 2009, p.7).  The reason for such vagueness is generally equated with the fact that each teacher is unique and has distinct preferences based on their beliefs (Konca & Otugen, 2009; Rosenblum-Lowden, 2000).

One of the most important aspects of classroom management is establishing clear rules and expectations of the students in terms of their behaviour, and consistently enforcing them (Konca & Otugen, 2009).  Such rules and expectations can be teacher or student generated depending on the teacher's approach (Woolfolk-Hoy & Weinstein, 2006).  Through consistency and continuity these rules become part of the classroom routine and can ensure the effectiveness of classroom activities, as students are aware of what is required (Konca & Otugen, 2009).  From these points on classroom management there appears to be little basis for why a teacher should be called Mister or Miss.  Is the use of such titles just a culturally embedded norm of what student and teacher roles should be?

An important aspect of rules and expectations around classroom management is to consider how many are simply 'ritualistic practices to be strictly adhered to' (Widdowson, 1987, p.85) and that may not be necessary.  It is engaging students in interesting learning activities that is the most significant way of avoiding classroom management issues (Kyriacou, 1998).  Widdowson (1987) distinguishes between two types of engagement that he felt need to synchronize for effective classroom practice: interactional and transactional.  An interactional purpose is focused on roles of appropriate behaviour where it is the mode of interaction itself that is meant to have the educational effect, i.e., socializing students into existing school norms.  A transactional purpose is concerned with meeting specific learning objectives, where norms and expectations are pedagogically based and roles are determined based on achieving such objectives.

There is often an incongruence between these two types of engagement where a proposed change in one conflicts with a protocol governing the other.  Interactional engagement is associated with enforcing things such as labels and titles (teacher, student, Sir, etc.) and in many ways goes against the nature of more student centred approaches that focus on transactional engagement.  Having students address the teacher as Mister or Miss may be seen as a necessary interactional engagement, but it could be argued that such a protocol goes against a transactional focus on student initiative and ownership.  Such visible demarcations like the use of titles keeps a control on what students may be willing to do.  For example, Mian (1995) noted that a student teacher found students had enhanced engagement and felt greater respect when they were addressed as Mister or Miss by their teacher, as opposed to only the teacher being addressed in such a way.  It is worth considering the use of titles such as Miss, Mister, etc., in the school context and the effects it has on interactional and transactional engagement and the alignment between them.

The value of titles is worth assessing in the classroom.  To finish, here are some quotes on the use of titles to consider...


  • The clouds may drop down titles and estates, and wealth may seek us, but wisdom must be sought. ~Edward Young
      
  • I am not interested in medals or titles. I don't need them. I need the love of the public and I fight for it. ~Olga Korbut
     
  • People don't follow titles, they follow courage. ~ William Wells Brown
  • I didn't come into the business to get awards or titles. ~ Julie Walters
     
  • Titles are but nicknames, and every nickname is a title. ~ Thomas Paine 



Image taken from: Image


References:
-Konca, M. & Otugen, R. (2009). Effective classroom management in relation to classroom routines and rules. In 1st International Symposium on Sustainable Development, June 9-10, 2009, Sarajevo, Bosnia and Herzegovina.
-Kyriacou, Chris, (1998). Essential teaching skills (2nd Ed.).
-Mian, T. (1995). Classroom discipline and management perceptions of a TESL student teacher
-Rosenblum-Lowden, R. (2000). You have to go to school... you're the teacher!: 300+ classroom management strategies to make your job easier and more fun. Corwin Press, Inc. A Sage.
-Widdowson, H. (1987). The roles of teacher and learner, ELT Journal, 41(2), 83-8.
-Woolfolk-Hoy, A., & Weinstein, C. (2006). Students' and teachers' perspectives on classroom management. In C. Evertson & C. S. Weinstein (Eds.), Handbook for classroom management: Research, practice, and contemporary issue (pp. 181-220). Mahwah, NJ: Lawrence Erlbaum.

Saturday, 18 August 2012

Thoughtful Quotes on Teaching

  1. It is the supreme art of the teacher to awaken joy in creative expression and knowledge.
    ~ Albert Einstein
  2. We spend the first twelve months of our children's lives teaching them to walk and talk and the next twelve telling them to sit down and shut up.
    ~ Phyllis Diller
  3. Modern cynics and skeptics see no harm in paying those to whom they entrust the minds of their children a smaller wage than is paid to those to whom they entrust the care of their plumbing.
    ~ John F. Kennedy
  4. A true disciple shows his appreciation by reaching further than his teacher.
    ~ Aristotle
  5. A teacher affects eternity; he can never tell where his influence stops.
    ~ Henry Adams
  6. I like a teacher who gives you something to take home to think about besides homework.
    ~ Lilly Tomlin
  7. If a child cannot learn the way we teach, maybe we should teach the way they learn.~ Ignacio Estrada
  8. Who dares to teach must never cease to learn.
    ~ John C. Dana
  9. A good teacher is a master of simplification and an enemy of simplism.
    ~ Louis Berman
  10. The test of a good teacher is not how many questions he can ask his pupils that they will answer readily, but how many questions he inspires them to ask him which he finds it hard to answer.
    ~ Alice Wellington Rollins