Showing posts with label Change. Show all posts
Showing posts with label Change. Show all posts

Friday, 27 January 2017

Lessons Learned From a Semester of Personal Technology Integration

Some of my aims for the Fall 2016 semester were to record my lectures and upload them to youtube, to embed simulations in my classes for student use, and to consider Affordable Learning Solutions (ALS). 
First, from my participation in the DISCOVERe course in the summer at Fresno State, I had planned to use the Explain Everything app so that I could record my lectures and upload them to youtube for students to review.  This at first was quite a daunting task, but something I thought might be beneficial to students.  However, after about five weeks of recording the lectures I stopped due to a number of issues.  Students appreciated it more when I would use the physical boards in the classroom, as there was better readability from the boards than the tablet projection. Students could also easily refer back to previous examples I had completed on another board when solving the next problem.  Further, as an instructor, my writing on the Explain Everything app was not particularly tidy and there was limited room to write on each slide.  More concerning however, was the lack of connection I felt with students compared to previous semesters.  In using the tablet, I made less eye contact with students and was focused more on writing on the tablet.  It felt like the tablet that I was holding was acting as an instructional/physical barrier between the students and I. After five weeks of using the tablet, I felt that I could recognize less students in the classroom than I had in previous semesters.  As a result of these issues, I stopped using the tablet for my explanations and went back to a combination of the classroom boards and Google Slides.  I think this was helpful in that quite a number of students commented positively on the change.  Having reviewed my youtube uploads, most of the videos were viewed less than 50 times by students (I had 122 students!), despite the links being provided to students through Blackboard.  I still think Explain Everything is a good app, but I would only use it in future when I cannot meet students face-to-face.
Second, an improvement I wanted to make in my lectures through the DISCOVERe program was to embed simulations within student activities in class.  I used several simulations throughout the semester (PhET simulations, Molecular Workbench, ChemCollective) and students generally responded positively to using these simulations. Tablets are fine in the classroom as long as it is mostly the students using them and not the instructor! Despite providing scaffolding to guide students through important features of the simulations, some of the simulations were still somewhat challenging for some students to figure out. However, I was proactive in moving around the room and helped students address such issues. My initial use of these simulation activities has been valuable for student engagement, but I will continue to consider ways to improve the scaffolds I use with these simulations.
            Lastly, as part of an aim for Affordable Learning Solutions for students, I recommended free books for students to use as a substitute for the prescribed text and also moved homework from an online homework system requiring a payment (from students) to Blackboard.  I feel that such changes did not negatively impact student outcomes for the class, but students did appreciate the option of not having to pay for a textbook or for an online homework system.
Over the course of the Fall 2016 semester, I spent considerable time determining effective ALS for my courses through discussions with certain faculty, discussions at the department level, and discussions with staff in the Center of Faculty Excellence at Fresno State.  As a result of these discussions, I have made a number of substantial and important changes to the course for Spring 2017 semester.  We are:

(a) trialling a free Introductory Chemistry textbook from OpenStax.  The material in this textbook is better organized than the previous textbook the students used.

(b) moving away from a fee-paying online homework system as a homework tool, instead using end-of-chapter Diagnostic Assessments for students to determine where they are having difficulties with the course material.  This change alongside the change in textbook will save students $141.  I also hope it will encourage students to concentrate on communicating the process through which they solve problems rather than just the solution.  I will also receive better insight into student thinking as an instructor.

(c) removing the use of iClickers and instead having students upload PDF documents of their lecture notes to Blackboard as part of their participation. An issue I had from Spring 2016 and again for Fall 2016 was that some students would not satisfactorily participate in the iClicker questions and would select any response, as they were not accountable.  This switch to a lecture notes upload should hopefully result in better student engagement in class.  Again, like the Diagnostic Assessments, the participation uploads will give better insight into student thinking and where they may have difficulties with the material.

(d) using Concept Maps/Mindmaps to encourage students to make effective connections across the different topics for the course.  A concern I had during Fall 2016 was that the material can at times be very fragmented and that students struggle to realize how all the material links up.  Concept Maps/Mindmaps should help students develop more coherent conceptual frameworks for the topics.


(e) using Discussion Forums to encourage students to ask questions and to also answer questions from their peers.  Students often send me e-mails that I think would be better suited to a Discussion Forum, as many students have very similar questions.  As such, I am encouraging students to post such questions to a discussion forum so that the responses are visible to all students.

Wednesday, 14 September 2016

Embedding Useful Tools Within Science Lectures

As part of the DISCOVERe tablet initiative at Fresno State, I have been considering ways to take advantage of a 1-to-1 (computer to student) classroom environment.  There are some particular websites and simulations that I have included in my classes that I believe have been mostly enjoyable and beneficial for students.  However, beyond anecdotal accounts, I do not have a holistic view of how students are using these resources outside of class time as a supplementary resource to my instruction.  I will use an exit survey at the end of the course to get a better sense of students' use of resources outside of class.

I consider the resources I have used so far to be well-described by the SAMR model (Substitution, Augmentation, Modification, and Redefinition; Figure 1).  The first two parts of the SAMR model, substitution and augmentation, focus on the enhancement of current pedagogy, while the latter two parts focus on the transformation of pedagogy.  The tools I have used so far this semester can be usefully classified and reflected on as either enhancement-based resources or transformation-based resources.

Figure 1 - SAMR Model (Taken from: goo.gl/zbi7GI)

Some examples of enhancement-based resources I have used are a scientific notation calculator, significant figures calculator, specific heat capacity data, and scale of the universe.  These resources have been mostly integrated as part of existing tasks within my courses.  I think these resources are very helpful supports for students, but a concern is how students may become over-dependent on them as opposed to using them exclusively to solve problems.  I encourage my students to solve the problems first by themselves and then use these tools to validate their answers.  However, if students do not follow my suggested learning approach, then these resources may be ineffective, if not problematic for student learning. The SAMR model fails to illustrate that substitution is not always necessarily an enhancement.

Some examples of transformation-based resources I use are simulations and name games such as Build an Atom, Build an Isotope, Making Compounds, and Naming Compounds.  The tasks I can now have in class allow students much greater ownership of the content, as opposed to me demonstrating the simulations on a data projector.  While students complete such tasks, I have found it beneficial to walk around the class and observe where students have difficulties so that I can elaborate on such examples to the whole class.  It also provides me with a better opportunity to interact with students as opposed to being centered at the top of the room for an entire class.  In some instances, I have students complete a Socrative questionnaire that provides me with additional insight on their learning for the particular resource being used that day.

I have a number of technology resources, both enhancement-based and transformation-based, that I plan to use during the rest of the semester.  I am hoping to keep my use of new technology on the latter end of the SAMR model, but I am also keeping in mind that some of my existing tasks are fine the way they are, with or without technology.   The SAMR model allows for wide interpretation in that the movement between different parts of the model is highly instructor-specific.  For instructors that use many teacher-centered approaches, any technology use by students could be transformative. For instructors that use many student-centered approaches, it is difficult to find technology that is transformative.  I like to think that my current teaching is mix of both student-centered and teacher-centered approaches. Hence, I can still target both sides of the SAMR model.



Saturday, 5 January 2013

Teaching Resolutions

What was your New Year's Resolution for teaching?  How can you be successful at bringing about change? Small steps and not big steps?

Happy New Year!